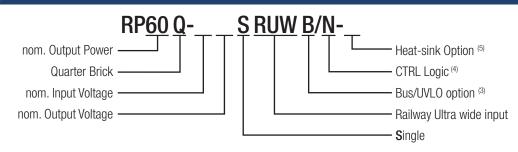
FEATURES

- 12:1 ultra wide input voltage range
- 3kVAC/1 minute reinforced insulation
- · High efficiency over entire input voltage range
- -40°C to +68°C temperature range without derating
- Output voltage sense and trim
- CE marked
- 3 year warranty

Dimensions (LxWxH): 57.9 x 36.8 x 12.7mm (2.28 x 1.45 x 0.5 inch) 64.0g (0.141 lbs)

DESCRIPTION

The quarter brick RP60Q series DC/DC converter is designed for railway rolling stock and high voltage battery applications. It has a 12:1 input voltage range to cover all input voltages from nominal 24VDC up to 110VDC in a single product (including EN50155 transients) and offers isolated and regulated 5V, 12V, 15V, 24V or 48VDC outputs with sense and trim pins. Programmable undervoltage-lockout and external bus pin for simplified compliance to challenging hold-up requirements is optional. The converter has a consistently high efficiency over the entire input voltage range and has an operating temperature range from -40°C to +68°C without forced air cooling or derating. The case is fitted with threaded inserts for secure mounting in high shock and vibration environments. The converter is CE marked and comes with a three year warranty.


SELECTION GUIDE					
Part Number	Input Voltage Range [VDC]	Output Voltage [VDC]	Output Current max. [A]	Efficiency typ. ⁽¹⁾ [%]	Max. Capacitive Load ⁽²⁾ [μF]
RP60Q-11005SRUW/N (3,4,5)	14-160	5	12	89	24000
RP60Q-11012SRUW/N (3,4,5)	14-160	12	5	89	4200
RP60Q-11015SRUW/N (3,4,5)	14-160	15	4	90	2700
RP60Q-11024SRUW/N (3,4,5)	14-160	24	2.5	90	1100
RP60Q-11048SRUW/N (3,4,5)	14-160	48	1.25	89	260

Note1: Efficiency is tested at 72Vin and full load at +25°C ambient

Note2: Max. Cap Load is tested at nominal input and full resistive load

MODEL NUMBERING

Note3: without "B" = without Bus function & UVP adjustability (pin 9 and 10 omitted) with "B" = with Bus & UVP adjustability (pin 9 and 10 present)

Note4: standard part is with suffix "/N" for negative logic (0=ON, 1=OFF)

or add suffix "/P" for positive logic (1=ON, 0=OFF), for more details refer to "ON/OFF CTRL"

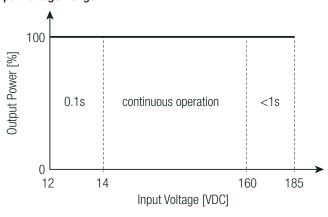
Note5: add suffix "-HC" for screwed Heat-sink (refer to "Dimension Drawing pre-mounted Heat-sink (mm)")

ACCESSIBLE PART		
Part Number	Description	Datasheet Link
R-REF04-RIA12-1	RIA12 reference board	R-REF04-RIA12.pdf
RSP150-168	Surge protector (voltage clamp) for RIA12 and NF F01-510 transients	RSP150-168.pdf

Parameter	C	ondition		Min.	Тур.	Max.
Internal Input Filter					1	Pi-Type
Input Voltage Range				14VDC	110VDC	160VDC
Input Surge Voltage	below 1 second	nom. Vin=	110VDC			185VDC
Under Voltage Lockout (UVLO)	nom. Vin= 110VDC	DC/D	C ON			14VDC
UNUEL VOILAGE LUCKUUL (UVLU)		DC/DC	COFF	10VDC	11VDC	12VDC
	V _{IN}	= 16VDC			4.2A	5.2A
Input Current (Range)	V _{IN} =	= 110VDC			0.6A	
	V _{IN} =	= 160VDC			0.45A	
Quiescent current					10mA	
Output Voltage Trimming	refer to "Outpu	t Voltage Trimming"		-20%		+10%
Minimum Load						
Start-up Time	constan	t resistive load			75ms	100ms
Rise Time					40ms	
		Positive Logic	DC/DC ON	0)pen or 3VDC <	$V_{CTRL} < 12VDC$
ON/OFF CTRL ⁽⁶⁾	refer to "ON/OFF CTRL"	FUSILIVE LUGIC	DC/DC OFF	S	nort or $OVDC <$	$V_{CTRL} < 1.2VDC$
UN/OFF CIRL .		Negative Logic	DC/DC ON	S	nort or $OVDC <$	$V_{CTRL} < 1.2 VDC$
		Negative Logic	DC/DC OFF	0)pen or 3VDC <	$V_{CTRL} < 12VDC$
Input Current on CTRL pin	drive current	I _{CT}	RL	-0.5mA		1mA
Standby Current	DC/DC OFF	l _{ir}	1		3mA	
Internal Operating Frequency				160kHz	180kHz	200kHz
		5Vc	out		75mVp-p	
Output Dipple and Naisa (7)	measured at 20MHz BW	12, 15	ōVout		100mVp-p	
Output Ripple and Noise 7		24V	'out		200mVp-p	
		48V	'out		300mVp-p	
Remote Sense ⁽⁸⁾						10%

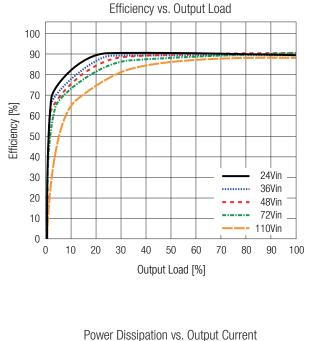
Note6: The ON/OFF control function can be positive or negative logic. The pin voltage is referenced to -Vin

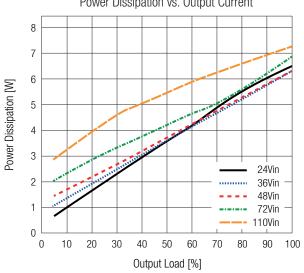
Note7: Measurements are made for 5Vout with a 1µF/25V X7R MLCC and a 22µF/25V E-Cap; for 15Vout with a 22µF/25V X7R MLCC,


for 24Vout with a 4.7µF/50V X7R MLCC and for 48Vout with a 2.2µF/100V X7R MLCC

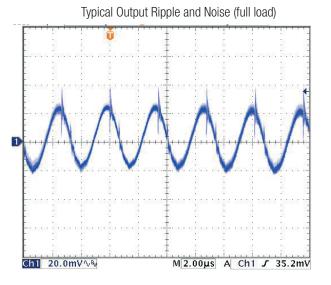
Note8: If not used connect Remote Sense pins to corresponding output pins

BASIC CHARACTERISTICS (measured @ T_{AMB}= 25°C, nom. V_{IN}, full load and after warm-up unless otherwise stated)


Input Voltage Range



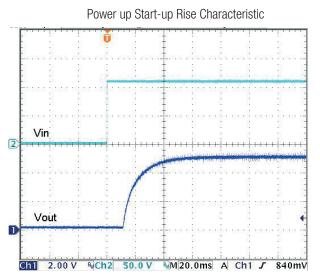
Continuous full power operation is rated between 14V and 160V, including full load start-up.


Once running, the converter will operate for short periods of time over an extended input voltage range down to 12V and up to 185V, thus covering all EN50155 under-voltage and over-voltage transient conditions.

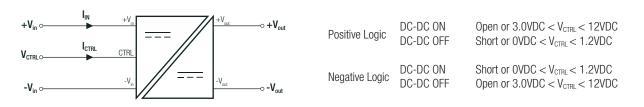
RP40Q-11005SRUW

Efficiency vs. Input Voltage 100 90 . 80 70 Efficiency [%] 60 50 40 30 100% load 20 50% load 10 25% load 0 55 30 70 85 100 115 145 160 14 130 Input Voltage [VDC]

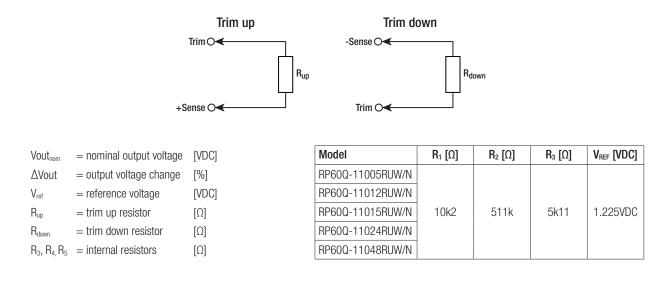




www.recom-power.com



BASIC CHARACTERISTICS (measured @ T_{AMB}= 25°C, nom. V_{IN}, full load and after warm-up unless otherwise stated)

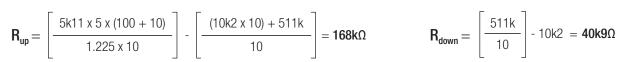


ON/OFF CTRL

OUTPUT VOLTAGE TRIMMING

It allows the user to increase or decrease the output voltage of the module. This is accomplished by connecting an external resistor between the Trim pin and either the +Sense or -Sense pins. With an external resistor between the Trim and +Sense pin, the output voltage increases. With an external resistor between the Trim and +Sense pin, the output voltage decreases. The external Trim resistor needs to be at least 1/8W of rated. The values for trim resistors shown in trim tables below are according to standard E96 values; therefore, the specified voltage may slightly vary.

Calculation:


$$\mathbf{R}_{up} = \begin{bmatrix} \frac{R_3 \times Vout_{nom} \times (100 + \Delta Vout)}{V_{ref} \times \Delta Vout} \end{bmatrix} - \begin{bmatrix} \frac{(R_1 \times \Delta Vout) + R_2}{\Delta Vout} \end{bmatrix} \qquad \qquad \mathbf{R}_{down} = \begin{bmatrix} \frac{R_2}{\Delta Vout} \end{bmatrix} - R_1$$

-160VDC

OUTPUT VOLTAGE TRIMMING

Practical Example RP60Q-xx05SRW +10% / -10%

 R_{un} according to E96 \approx 169k Ω

 \boldsymbol{R}_{down} according to E96 \approx $41k2\Omega$

RP60Q-xx05SRW

Trim up	1	2	3	4	5	6	7	8	9	10	[%]
Vout _{set} =	5.05	5.10	5.15	5.20	5.25	5.30	5.35	5.4	5.45	5.50	[VDC]
R_{up} (E96) \approx	1M58	806k	536k	402k	324k	247k	237k	205k	187k	169k	[Ω]

RP60Q-xx12SRW

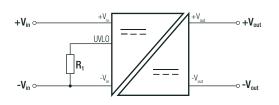
Trim up	1	2	3	4	5	6	7	8	9	10	[%]
Vout _{set} =	12.12	12.24	12.36	12.48	12.60	12.72	12.84	12.96	13.08	13.20	[VDC]
R_{up} (E96) \approx	4M53	2M26	1M54	1M15	931k	787k	681k	604k	536k	487k	[Ω]

RP60Q-xx15SRW

Trim up	1	2	3	4	5	6	7	8	9	10	[%]
Vout _{set} =	15.15	15.30	15.45	15.60	15.75	15.90	16.05	16.20	16.35	16.50	[VDC]
R_{up} (E96) \approx	5M76	2M94	1M96	1M47	1M21	1M02	866k	768k	698k	619k	[Ω]

RP60Q-xx24SRW

Trim up	1	2	3	4	5	6	7	8	9	10	[%]
Vout _{set} =	24.24	24.48	24.72	24.96	25.20	25.44	25.68	25.92	26.16	26.40	[VDC]
R_{up} (E96) \approx	9M53	4M7	3M24	2M94	2M	1M69	1M47	1M27	1M15	1M05	[Ω]


RP60Q-xx48SRW

Trim up	1	2	3	4	5	6	7	8	9	10	[%]
Vout _{set} =	48.48	48.96	49.44	49.92	50.40	50.88	51.36	51.84	52.32	52.80	[VDC]
R_{up} (E96) \approx	19M6	9M94	6M65	5M11	4M12	3M4	3M01	2M61	2M37	2M15	[Ω]

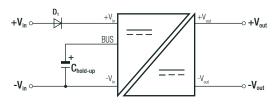
Trim Down all Vout's

Trim down	1	2	3	4	5	6	7	8	9	10	[%]
R_{down} (E96) \approx	499k	243k	162k	118k	90k9	75k	63k4	53k6	46k4	41k2	[Ω]
	1					1				1	1
Trim down	11	12	13	14	15	16	17	18	19	20	[%]
R _{down} (E96) ≈	36k5	32k4	28k7	26k1	23k7	21k5	19k6	18k2	16k5	15k4	[Ω]

UNDER VOLTAGE LOCKOUT ADJUSTABILITY

The RP60Q-RUWB series has an adjustable under voltage lockout which will shut down the converter according to following settings.

Nom. Input Voltage	24	36	48	72	96	110	[VDC]
Turn Off Threshold	12.4	19.6	26.8	41.2	55.6	64	[VDC]
Turn On Threshold	14.8	22	29.2	43.6	58	66.4	[VDC]
Resistor R ₁	96.77	17.14	9.40	4.94	3.35	2.82	[kΩ]



HOLD UP TIME SETTING

An additional BUS pin (version with suffix -B) supplies a fixed voltage for capacitor charging. Meeting S2, S3, and C2 conditions as described in EN50155 requires numerous aluminum electrolytic capacitors for ample energy. High voltage capacitors occupy significant space, posing challenges for limited specifications. To address varying system voltages, different capacitance values and withstand-voltage capacitors are needed.

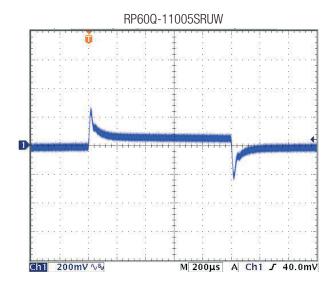
The enhanced hold-up function resolves this by using the same capacitors for various system voltages and interruptions. This innovation is ideal for railway system power boards. Unlike conventional hold-up capacitors, the BUS pin consistently provides 21.4V, compatible with 25V rated capacitors for both 24V and 110V systems, ensuring a uniform solution in terms of capacitance value and quantity.

By connecting capacitors to the BUS pin, the inrush current is restricted effectively via the internal charging path that could reduce the extra external components of the whole system.

The formula provided below allows for the calculation of capacitor capacitance, with the potential for adjusting the margin based on practical application requirements.

$$\mathbf{C}_{\text{hold-up}} = 0.0096 \times P_{\text{IN}} \times t$$

Pin	= Input Power	[W]
t	= interruption duration	[S]
$C_{\text{hold-up}}$	= calculated capacitor	[µF]

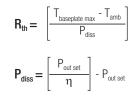

Practical Example:

P _{OUT}	=	60W
P _{IN}	=	67.4W
V _{IN}	=	110VDC
t	=	0.01s

 $\label{eq:chold-up} \begin{array}{l} \textbf{C}_{\text{hold-up}} = 0.0096 \text{ x } 67.4 \text{ x } 0.01 = 0.0064704 \text{ F} \\ \\ \textbf{C}_{\text{hold-up}} \text{ according to E96} \approx 6490 \mu \text{F} \end{array}$

REGULATIONS		
Parameter	Condition	Value
Output Accuracy		±1.0% max.
Line Regulation	low line to high line, full load	±0.1% max.
Load Regulation	0% to 100% load	0.1% max.
Transient Response	25% load step change	250µs typ.

Transient Response to Dynamic Load change from 100% to 75% to 100% of Full Load at nom. Vin


PROTECTIONS				
Parameter		Condition	Value	
Short Circuit Protection (SCP)		below $100m\Omega$		continuous, hiccup mode, automatic recovery
Over Voltage Protection (OVP)				120-135%, hiccup mode
Over Current Protection (OCP)				120-140%, hiccup mode
Over Temperature Protection (OTP)				+115°C ±5°C
Isolation Voltage ⁽⁹⁾	nom // 110//D0	I/P to O/P	rated for 1 minute	3kVAC
	nom. V _{IN} = 110VDC	I/P, O/P to Baseplate	rated for 1 minute	1.5kVAC
Isolation Resistance		tested with 500VDC	1GΩ min.	
Isolation Capacitance			1000pF max.	
Leakage Current			2250µA	
		<2000m		reinforced (based on Electric Strength Test)
Insulation Grade		>2000m up to 5000m	functional	

Note9: For repeat Hi-Pot testing, reduce the time and/or the test voltage

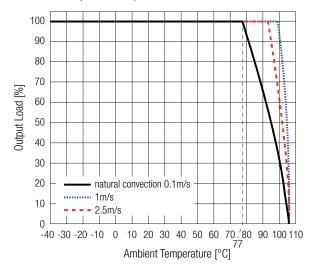
Note10:Refer to local safety regulations if input over-current protection is also required. Recommended fuse: T5A slow blow type

ENVIRONMENTAL				
Parameter	Con	Value		
Operating Temperature Range	refer to "Thern	nal Calculation"	-40°C to +105°C	
Maximum Baseplate Temperature			+110°C	
Temperature Coefficient			±0.02%/K	
Thermal Impedance	vertical direction by natural convection (0.1m/s)	without Heat-sink	6.3K/W	
		with Heat-sink	5.0K/W	
Operating Humidity		5%-95% RH		
Thermal Shock				
Vibration			according to EN61373 standard	
Fire Protection on Railway Vehicles			according to EN61373 standard	
MTBF	according to MIL-HDBK-217F	+25°C	800 x 10 ³ hours	
	standard, G.B.	+85°C	120 x 10 ³ hours	

Thermal Calculation

T _{baseplate max.}	= baseplate temperature	[°C]
T _{amb}	= ambient temperature	[°C]
Pout nom.	= nom. output power	[W]
Pout set	= output power set	[W]
P _{diss}	= internal losses	[W]
R _{th}	= thermal impedance	[K/W]
η	= efficiency under given operating conditions	[%]

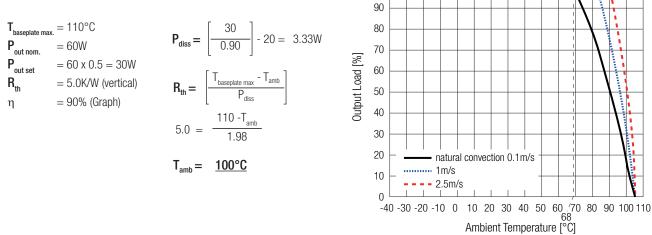
Practical Example:


Take the **RP60Q-11005SRUW** with 48V Input Voltage and 50% load, natural convection 0.1m/s, in vertical application. What is the maximum ambient operating temperature?

T _{baseplate ma} P _{out nom.}	_{ix.} = 110°C = 60W	$\mathbf{P}_{diss} = \begin{bmatrix} 30 \\ 0.90 \end{bmatrix} - 30 = 3.33W$	$\mathbf{R}_{th} = \left[\frac{T_{baseplate max} - T_{amb}}{P_{diss}} \right]$
P _{out set}	= 60 x 0.5 = 30W	110 T	
R _{th}	= 6.3K/W (vertical)	$6.3 = \frac{110 - 1_{amb}}{2.22}$	$T_{amb} = 89.0^{\circ}C$
η	= 90% (Graph)	3.33	

Derating Graph

(@ Chamber - tested with double layer PCB: 160x100mm 105µm Eurocard)

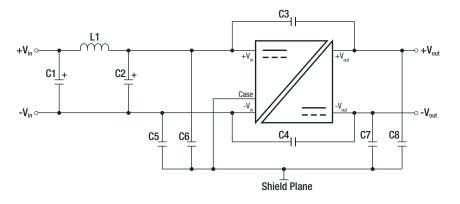


Derating Graph

(@ Chamber - tested with double layer PCB: 160x100mm 105µm Eurocard)

Take the RP60Q-11005SRUW-HC with 48V Input Voltage, 50% load, natural convection 0.1m/s, in vertical application and Heat-sink. What is the maximum ambient operating temperature?

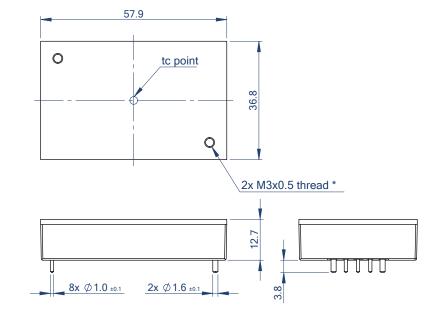
100

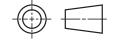

SAFETY AND CERTIFICATION		
Certificate Type (Safety)	Report / File Number	Standard
Audio/video, information and communication technology equipment. Safety requirements	LVD1809046-1 +	EN62368-1:2014 + A11:2017
	LVD1903037-1-M1	IEC62368-1:2014, 2nd Edition
Railway applications - Electrical equipment used on rolling stock		EN50155:2017
Environmental testing Part 2-1: Tests – Test A: Cold		DIN EN60068-2-1:2008-01
Environmental testing Part 2-2: Tests – Test B: Dry heat	T181022L06-RL	DIN EN60068-2-2:2008-05
Environmental testing Part 2-30: Tests - Test Db: Damp heat, cyclic		DIN EN60068-2-30:2006-06
Railway applications – Rolling stock equipment – Shock and vibration tests		EN61373:2010
Audia hidaa informatian and communication toohaalaru aquinmant Darth. Cafatu raquiramanta	E196683	UL62368-1:2014
Audio/video, information and communication technology equipment-Part1: Safety requirements	E190003	CAN/CSA-C22.2 No. 62368-1:2014
RoHS2		RoHS 2011/65/EU + AM2015/863

SAFETY AND CERTIFICATION		
EMC Compliance (Railway)	Condition	Standard / Criterion
Railway applications - Electromagnetic compatibility		EN50121-3-2:2016
Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement		EN55032:2010
ESD Electrostatic discharge immunity test	Air: ±2, 4, 8kV, Contact: ±2, 4, 6kV	EN61000-4-2:2009, Criteria A
Radiated, radio-frequency, electromagnetic field immunity test	20V/m (80-1000MHz) 10V/m (1400-2000MHz) 5V/m (2000-2700MHz) 3V/m (5100-6000MHz)	EN61000-4-3:2006 + A2:2010, Criteria A
Fast Transient and Burst Immunity	DC Power Port: ±2kV	EN61000-4-4:2012, Criteria A
Surge Immunity	DC Power Port: ±2kV	EN61000-4-5:2014, Criteria A
Immunity to conducted disturbances, induced by radio-frequency fields	DC Power Port: 10V	EN61000-4-6:2014, Criteria A
Power Magnetic Field Immunity	50Hz, 100A/m, 1000A/m	EN61000-4-8:2009, Criteria A
Electromagnetic compatibility of multimedia equipment - Emission requirements	with external filter (see filter suggestion below)	EN55032:2015 + AC:2016-07, Class A
EMC Compliance (Multimedia)	Condition	Standard / Criterion
Information technology equipment - Immunity characteristics - Limits and methods of measurement		EN55024:2010 + A1:2015
ESD Electrostatic discharge immunity test	Air: ±2, 4, 8kV, Contact: ±2, 4, 6kV	IEC61000-4-2:2008, Criteria A
Radiated, radio-frequency, electromagnetic field immunity test	3V/m (80-1000MHz) 20V/m (80-1000MHz) 10V/m (1400-2000MHz) 5V/m (2000-2700MHz) 3V/m (5100-6000MHz)	IEC61000-4-3:2006 + A2:2010, Criteria A
Fast Transient and Burst Immunity	DC Power Port: ±0.5, 2kV	IEC61000-4-4:2012, Criteria A
Surge Immunity	DC Power Port: L-N ±0.5, 1kV	IEC61000-4-5:2014, Criteria A
Immunity to conducted disturbances, induced by radio-frequency fields	DC Power Port: 3V, 10V	IEC61000-4-6:2013, Criteria A
Power Magnetic Field Immunity	50/60Hz, 1, 100, 1000A/m	IEC61000-4-8:2009, Criteria A

Note11: An external input filter capacitor is required if the module has to meet EN61000-4-4 and EN61000-4-5 Recom suggests: 2 pcs. 150µF/200V connected in parallel

EMC Filtering according to EN55032 Class A

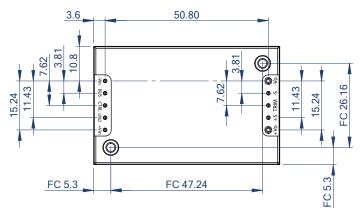



Component List Class A

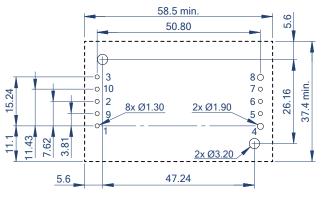
C1	L1	C2	C3, C4	C5, C6, C7, C8
47µF, 200V	8.2uH	47uE 200V	1000pF,	1000pF, 250VAC
47μ Γ , 200V	ο.2μπ	47µF, 200V	400VAC	1808 MLCC

Parameter	Туре	Value
	baseplate	aluminum
Metazial	case	plastic, (UL94 V-0)
Material	potting	low smoke silicone, (UL94 V-0)
	PCB	FR4, (UL94 V-1)
	without light sink	57.9 x 36.8 x 12.7mm
Dimension (LyMyd)	without Heat-sink	2.28 x 1.45 x 0.5 inch
Dimension (LxWxH)	with Heat-sink	57.9 x 36.8 x 25.4mm
	WILLI HEAL-SILIK	2.28 x 1.45 x 1.0 inch
	without Heat-sink	64.0g typ.
Weight	WILIOUL HEAL-SILK	0.141 lbs
	with Heat-sink	88.0g typ.
	wiui neal-Silik	0.194 lbs

Dimension Drawing (mm)



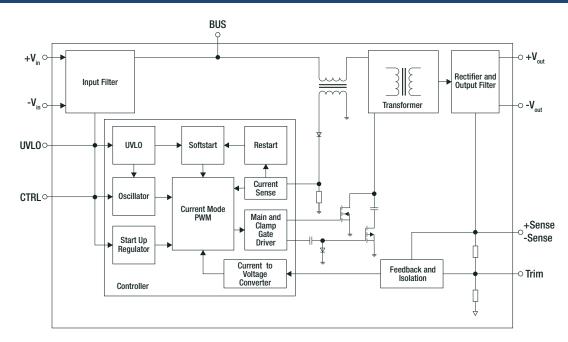
RECO


DC/DC Converter

Pinning Information			
Pin #	Function	Pin Ø	
1	-Vin	1.0mm	
2	CTRL	1.0mm	
3	+Vin	1.0mm	
4	-Vout	1.6mm	
5	-Sense	1.0mm	
6	Trim	1.0mm	
7	+Sense	1.0mm	
8	+Vout	1.6mm	
9	BUS	1.0mm	
10	UVLO	1.0mm	

FC= Fixing Centers for Heat-sink *recommended tightening torque: 0.34Nm

Recommended Footprint Detail


Tolerances: x.x= ± 0.5 mm x.xx= ± 0.25 mm

DIMENSION & PHYSICAL CHARACTERISTICS

Dimension Drawing pre-mounted Heat-sink (mm)

BLOCK DIAGRAM

PACKAGING INFORMATION					
Parameter		Туре	Value		
Pooleging Dimonsion (LyWyH)	trov	without Heat-sink	157.0 x 88.0 x 23.0mm		
Packaging Dimension (LxWxH)	tray	with Heat-sink	157.0 x 88.0 x 35.0mm		
Packaging Quantity			2pcs		
Storage Temperature Range			-55°C to +125°C		
Storage Humidity	non-(condensing	5% - 95% RH		

The product information and specifications may be subject to changes even without prior written notice. The product has been designed for various applications; its suitability lies in the responsibility of each customer. The products are not authorized for use in safety-critical applications without RECOM's explicit written consent. A safety-critical application where a failure may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The applicant shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.